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a b s t r a c t 

Graph theory allows assessing changes of neuronal connectivity and interactions of brain regions in response to 
local lesions, e.g., after stroke, and global perturbations, e.g., due to psychiatric dysfunctions or neurodegenera- 
tive disorders. Consequently, network analysis based on constructing graphs from structural and functional MRI 
connectivity matrices is increasingly used in clinical studies. In contrast, in mouse neuroimaging, the focus is 
mainly on basic connectivity parameters, i.e., the correlation coefficient or fiber counts, whereas more advanced 
network analyses remain rarely used. This review summarizes graph theoretical measures and their interpreta- 
tion to describe networks derived from recent in vivo mouse brain studies. To facilitate the entry into the topic, 
we explain the related mathematical definitions, provide a dedicated software toolkit, and discuss practical con- 
siderations for the application to rs-fMRI and DTI. This way, we aim to foster cross-species comparisons and 
the application of standardized measures to classify and interpret network changes in translational brain disease 
studies. 
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The brain is a complex dynamic system that comprises many dif-
erent structures interacting as functional units with nonrandom topo-
ogical features in a large-scale network ( Sporns and Bullmore, 2014 ).
mong the non-invasive imaging techniques with an apparent transla-

ional component, MRI provides non-invasive access to functional and
tructural details of that network using sequences such as Diffusion Ten-
or Imaging (DTI) and resting-state functional MRI (rs-fMRI). In humans,
hese approaches helped to better characterize individual variability and
ehavioral performance, to identify biomarkers of acute and neurode-
enerative diseases ( Grefkes and Fink, 2014 ; Andica et al., 2019 ), and
o select targets for neuromodulation ( Horn and Fox, 2020 ). The recent
dvent of small animal-specific MRI hardware and sequences optimized
o small rodent brains allows urgently needed complementary studies
f the basic concepts of neural processing and associated connectivity
hanges ( Hoehn and Aswendt, 2013 ; Pan et al., 2015 ; Müller et al.,
020 ), and the network effects related to spontaneous and therapy-
nduced behavioral improvement after brain disease ( Harsan et al.,
013 ; Jonckers et al., 2015 ; Green et al., 2018 ; Aswendt, Pallast, et al.,
020 ; Blaschke et al., 2021 ). 

According to the conventional region-by-region connectivity analy-
is, a small number of regions is selected for a detailed subnetwork anal-
sis. This approach is biased for the brain regions selected and under-
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epresents the breadth and detail of whole-brain connectivity data. Here,
 network approach using graph theory has been proven helpful in clin-
cal/human MRI (reviewed, e.g., in ( Sporns, 2010 ; Fallani et al., 2014 ;
allquist and Hillary, 2018 ; Farahani et al., 2019 )). The critical ad-
antage of this approach is that it allows assessing far-distance inter-
ctions and network alterations in generalized local and global network
easures, which can be directly compared between studies and embed-
ed in more general network models of health and disease ( Bullmore
nd Sporns, 2009 ; Sporns, 2010 ; van den Heuvel and Sporns, 2019 ),
.g., stroke or Alzheimer’s disease ( Crofts et al., 2011 ; Stam et al., 2006 ).
or this purpose, the mouse model is advantageous as it offers a direct
nd individual correlation of network measures with cellular and molec-
lar features. Implementing harmonized and atlas-based network mea-
ures is therefore a promising strategy to advance the interpretation of
onnectivity parameters in mouse brain studies. 

This review introduces the essential concepts of brain network anal-
sis and their interpretation based on mouse MR neuroimaging studies.
e further share software to facilitate a new form of large-scale, multi-

enter, translational mouse brain studies. The overview is limited to
ouse MR neuroimaging as the most widely used animal model with

ersatile options for genetic modifications, detailed anatomical map-
ing, viral tracing, and gene expression available ( Hawrylycz et al.,
011 ; Hess et al., 2018 ; Lein et al., 2007 ; Oh et al., 2014 ; Wang et al.,
020 ). Notably, the conclusions do not exclude other small animal
odels and complement earlier reviews of connectivity, e.g., in the
arch 2022 
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at brain ( Bifone et al., 2010 ) and in clinical studies ( Hallquist and
illary, 2018 )). 

ouse-specific requirements for imaging structural and 

unctional connectivity 

Mouse brain MRI has special hardware requirements to achieve with
n approximately 2800-fold smaller brain volume the image quality
omparable with human MRI. Therefore, it requires much higher mag-
etic field strengths to increase the signal to noise ratio while obtaining
igh resolution images (common voxel sizes: 100-300 𝜇m in plane and
00-750 𝜇m slice thickness). For both DTI and rs-fMRI, fast echo-planar
maging (EPI) based on a gradient-echo is most often used, despite the
otential susceptibility artefacts, which should be minimized by careful
pplication of strong, higher-order shims ( Pan et al., 2015 ). 

In the classical and most widely used fiber tracking experiment us-
ng Diffusion Tensor Imaging (DTI), fiber tracts are estimated and re-
onstructed in 3D based on the directional dependence of water diffu-
ivity along with white matter structures ( Pierpaoli and Basser, 1996 ).
TI has been optimized for the mouse brain to limit susceptibility-
nd motion-induced artifacts at ultra high fields ( Boretius et al., 2007 ;
arsan et al., 2013 ; Aswendt et al., 2020 ). However, it remains a chal-

enge to acquire multi-directional diffusion data with high b-values for
igh diffusion contrast and a sufficient signal-to-noise ratio in a reason-
ble scan time considering animal welfare (typically: below 1.5 hours)
 Müller et al., 2020 ). Even under ideal experimental conditions, the
hoice of diffusion modeling (deterministic vs. probabilistic) and pa-
ameters (e.g. step size, cutoff values, number of streamlines) affect the
ractography performance ( Karatas et al., 2021 ). Further limitations for
nterpretation should be considered: i) tractography is bidirectional, not
ecessarily constrained by synapses, and might include multiple axons
 Calabrese et al., 2015 ), ii) it remains challenging to resolve crossing
bers with a conventionally used low number of gradient directions
typically around 30), and iii) diffusion anisotropy might be influenced
y additional tissue parameters such as level of myelination and fiber
iameter ( Müller et al., 2020 ). 

Functional connectivity relates to the temporal dependence between
patially remote neurophysiological events, which is reflected in the cor-
elation of two spatially restricted time series in the low-frequency range
0.01-0.1 Hz) ( van den Heuvel and Pol, 2010 ). Positive values reflect
ooperation or integration and negative correlations imply segregation
nd antagonism between brain areas ( Fornito et al., 2016 ). The signal
ime series is related to the blood oxygen level-dependent effect of in-
reased local blood flow and volume in response to neuronal activity.
ifferent from DTI-based structural connectivity analysis, in rs-fMRI,

eed- and model-free methods co-exist. In the seed-based/atlas-based
nalysis, a standardized brain atlas is registered with the rs-fMRI data to
erive correlations between a particular brain region against all other re-
ions, which allows assessing the correlation between all combinations
f regions ( Jonckers et al., 2015 ; Green et al., 2018 ; Aswendt et al.,
021 ). In the model-free approach, localized resting-state patterns are
xtracted without a prior definition of regions using independent com-
onent analysis (ICA) to discriminate spatial sources that are maximally
ndependent of each other ( van den Heuvel and Pol, 2010 ). ICA is differ-
nt when applied to multiple groups (disease vs. control, wild-type vs.
utant), leading to sets of components with different spatial extents and

trengths ( Mandino et al., 2020 ). Thus, comparisons at a group or study
evel are complex and require strategies such as multi-subject ICA com-
ined with dual regression to facilitate statistical testing ( Zerbi et al.,
015 ). 

Despite exciting new protocols of scanning awake mice with head fix-
tion, which best resemble human MRI conditions but require extensive
raining and monitoring of stress ( Desai et al., 2011 ; Tsurugizawa et al.,
020 ), most protocols include anaesthetics. The selection of anaesthe-
ia has strong influence, especially on the calculation of functional con-
ectivity, which assumes stable physiological conditions. In the most
2 
ommon protocol, initial isoflurane (1-2%) anaesthesia is followed by
edetomidine (MED: 0.05 mg/kg bolus, 0.1 mg/kg/h infusion) and low-
ose isoflurane (ISO 0.5%) ( Grandjean et al., 2014 ). The ISO/MED pro-
ocol takes advantage of complementary effects of both drugs related to
ltered hemodynamic and neurovascular coupling (e.g. vasodilation vs.
asoconstriction). Under ISO intra- and inter-cortical interactions domi-
ate and cortico-thalamic connectivity is attenuated, whereas MED pro-
otes subcortical connectivity including interactions between cortical

nd thalamic components ( Bukhari et al., 2017 ). In a steady-state of
ortical activity after the ISO to ISO/MED transition, the protocol en-
bles reproducible functional networks in mice ( Pradier et al., 2021 ).
n addition, the ISO/MED protocol provides similar bilateral and uni-
ateral functional networks in comparison to an awake fMRI protocol
 Yoshida et al., 2016 ). 

To remove remaining hardware and physiological noise in the data,
 multi-step processing is required - especially for rs-fMRI - and typically
ncludes motion correction, spatial smoothing, temporal demeaning, de-
rending and band-pass filtering, regression of nuisance covariates. As
here is no consensus in the field, it can be difficult to find the best
enoising approach. In a recent comparison of six nuisance regression
odels, the signal from ventricle and vascular masks combined with
otion parameters showed best specificity of functional connectivity

 Grandjean, et al., 2020 ). Alternatively, recordings of physiological cy-
les can be used as regressors, e.g. for the motion linked to the respi-
atory cycle ( Kalthoff et al., 2011 ; Aswendt, Green, et al., 2021 ). For a
ore detailed overview of mouse-specific requirements, we refer to re-

ent reviews, e.g., ( Müller et al., 2020 ; Jonckers et al., 2015 ; Pan et al.,
015 ; Gorges et al., 2017 ). 

he MRI-compatible mouse brain atlas 

A brain atlas with a pre-defined brain structure hierarchy and co-
rdinate system has essential advantages, as it can serve as a reference
ystem to facilitate collaborative, comparative, and interoperable work,
.g., multi-center studies and atlas-based correlations with histology and
ehavior ( Hawrylycz et al., 2011 ; Hess et al., 2018 ). Different from
he Montreal Neurological Institute (MNI) human atlas, as one common
tandard brain atlas in human MRI ( Mazziotta, 2002 ), a similar mouse
RI-compatible standard is not defined and most labs rely on a custom-
ade MRI template and brain atlas ( Grandjean et al., 2020 ). 

In recent atlas developments, various microscopy- or MRI-based
tlases were generated ( Dorr et al., 2008 ; Hawrylycz et al., 2011 ;
ess et al., 2018 ; Pallast, Diedenhofen, et al., 2019 ), which differ in

mage resolution and level of segmentation detail in 2D/3D ( Figure 1A-
 ). Next to the MRI-based DSURQE atlas with 40 𝜇m isotropic res-
lution and 180 defined structures, the Allen Brain Reference Atlas
ARA), represents the most detailed anatomical atlas in terms of im-
ge resolution (10 𝜇m isotropic) and segmentation details in 3D (1327
eural structures, fiber tracts and gross anatomical details). The at-
as was generated as a group average autofluorescence stack acquired
rom 1,675 C57BL/6J male mice using serial two-photon tomography
 Oh et al., 2014 ). Due to differences in ontology and some anatomical
elineations from the historical 2D gold standard, the atlas by Franklin
nd Paxinos generated from one C57BL/6J mouse ( Franklin and Paxi-
os, 2008 ), there are ongoing approaches to combine and harmonize the
wo ( Chon et al., 2019 ). Unique to the ARA is that in the same common
oordinate framework for all regions, gene expression and viral tracing
ata can be retrieved ( Lein et al., 2007 ; Oh et al., 2014 ) and integrated
or comparison and region-wise correlations in studies of functional and
tructural connectivity ( Mills et al., 2018 ; Goubran et al., 2019 ). To ob-
ain an MRI-compatible ARA version split between hemispheres, we and
thers have proposed down-scaled versions, in which the anatomical
ierarchy is maintained, and small regions that would otherwise suf-
er from partial volume effects were merged in larger parental regions
 Pallast et al., 2019 ; Takata et al., 2021 ). Our custom version, for ex-
mple, comprises 98 regions (49 per hemisphere), including important
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Figure 1. Digital mouse brain atlas. A) Images from currently available mouse brain atlases derived from microscopy and MRI: 1) Allen Brain Reference Atlas (ARA, 
( Lein et al., 2007 ; Wang et al., 2020 )), 2) Australian Mouse Brain Mapping Consortium, AMBMC ( Janke and Ullmann, 2015 ), 3) DSURQE ( Dorr et al., 2008 ), 4) 
LONI ( MacKenzie-Graham et al., 2007 ), 5) MR histology ( Johnson et al., 2010 ), 6) MRM NeAt ( Ma et al., 2005 ). Upper row shows axial section of the template and 
lower row the corresponding section with atlas labels. B) Illustration of differences in image resolution and parcellation. C) Differences in voxel and image stack 
dimensions between typical MRI - in vivo DTI ( Pallast, Wieters, et al., 2020 ) and the ARA with 50 μm scaling. D) Example of multi-step registration result of the 
original ARA and a T2-weighted MRI. A and D modified from ( Pallast, Diedenhofen, et al., 2019 ). 
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Material Table S1. 
ortical and subcortical regions and has been successfully applied to DTI
nd rs-fMRI network analysis ( Pallast et al., 2020 ; Aswendt et al., 2020 ;
swendt et al., 2021 ). Takata et al. used a version with 100 atlas re-
ions for rs-fMRI across the anatomical hierarchy ( Takata et al., 2021 ).
he choice of the atlas and the number and size of regions is critical
or graph construction as it constraints the resolution for all following
nalysis and directly affects non-binary measures as a function of spatial
cale ( Zalesky et al., 2010 ). 

High-quality atlas registration is essential to avoid incorrect assign-
ent of nodes. Unlike a T2- or diffusion-weighted MRI atlas ( Figure 1A ),

he ARA image contrast is different, e.g., the ventricles appear black,
aking it difficult for registration using intensity-based similarity mea-

ures. Further, voxel dimensions and size of the image stacks differ
astly between MRI and the ARA, especially in the z-component (e.g., 20
s. 264 slices ( Figure 1C ). Inhomogenous shrinkage of the brain, such
s in neurodegenerative diseases or acute brain lesions, requires spe-
ific optimization of registration parameters ( Bachmann et al., 2018 ;
allast, et al., 2019 ). We and others have implemented specific multi-
tep registration workflows ( Figure 1 D) using common affine and non-
inear registration algorithms and software adapted from human MRI
 Koch et al., 2017 ; Goubran et al., 2019 ; Pallast et al., 2019 ; Takata et al.,
021 ). 
3 
ow to apply graph theory to mouse brain MRI data 

raph construction 

The first step in applying graph theory is to construct a graph repre-
enting the underlying brain network. Graphs are mathematical objects
efined by a set of brain areas (nodes) and their structural or functional
elation (edges). Each edge represents the relation between two con-
ected nodes and defines if the connection exists (unweighted, binary
raph), the connectivity strength (weighted, undirected graph), and the
rder of nodes (unweighted/weighted, directed graph) ( Figure 2A ). Di-
ected edges indicate a directionality of information transfer. Graphs
an be stored in a square matrix of size N × N (where N is the number
f nodes), the so-called adjacency matrices ( Figure 2A ). The number of
ows and columns corresponds to the number of nodes with zeros on its
iagonal. Each non-zero entry in the adjacency matrix corresponds to
n edge between two nodes. In case of a weighted graph, the value of
he entry quantifies the strength of the connection. Symmetric adjacency
atrices correspond to undirected graphs, nonsymmetric matrices to di-

ected graphs. For a comprehensive list of notations, see Supplementary
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Figure 2. Graph construction and resulting adjacency matrices. A) Different types of adjacency matrices related to binarized (undirected), weighted (undirected), 
and weighted (directed) graphs. B) Schematic overview of typical data processing steps for graph construction in rs-fMRI including the pooling of BOLD traces in 
voxels related to a specific brain region. The resulting graph can be thresholded and/or binarized. 
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ata pooling 

For rs-fMRI, the pooling relates to the (blood-oxygen-level-
ependent (BOLD)) traces of single voxels to create a Region of Interest
ROI), i.e., mapping of voxels to pre-defined atlas regions by averaging
cross all voxels belonging to one ROI. The connectivity between the
OIs is expressed as the Pearson’s correlation (for alternative models,
ee ( Luppi and Stamatakis, 2021 ; Fornito, Zalesky, and Bullmore, 2016 ;
ang et al., 2014 ). The resulting graph is undirected, i.e., there is in-

ormation about the functional connectivity between regions but not
hich region directs the activity of the other regions. Various connec-

ivity measures exist to obtain directed graphs, e.g., Granger causality or
ynamic Causal Modelling (DCM). The resulting asymmetric matrices
orrespond to directed graphs of effective connectivity and include the
ausal influence of region A over B ( Bajaj et al., 2016 ). These methods
equire a higher amount and quality of data to be reliable. The con-
tructed graph has per definition a higher degree of freedom and the
stimators have a greater complexity ( Conti et al., 2019 ), which leads
o a higher variability in the estimated links. So far, effective connec-
ivity was successfully calculated for a small number of nodes using the
ranger causality only ( Karatas et al., 2021 ) but not for larger networks.

For DTI, the pooling and correlation operations are combined. The
oxels are clustered into super-voxels that represent the ROIs. The con-
ectivity measure counts the number of reconstructed fibers between
hese ROIs and constructs a symmetric matrix, as shown for the fMRI
xample. In both scenarios, the result is a symmetric undirected matrix
epresenting an undirected graph, as there is no directionality of the
onnections included ( Figure 2A ). The construction of the adjacency ma-
rices is the most important step in the application of graph theory. The
esulting matrices should be checked at this stage for plausibility, e.g.,
or existence of wellknown connectivity patterns. All following analysis
teps are an abstraction of these results. To our knowledge there is no
stablished protocol for the quality control in pre-clinical trials. 

hresholding 

Thresholding is an essential part of the analysis to filter the con-
ectivity matrix, reduce the number of edges, and retain only connec-
4 
ions with a high probability and minimal stochastic effects. Prior to
hresholding functional connectivity data, a strategy for negative values
eeds to be determined. Some network measures (e.g. shortest path) re-
uire (weighted) positive networks, e.g. by setting all negative edges
o 0 or taking the absolute values of all edges. Both strategies alter the
raw ” connectivity and it is advisable to report in case of many negative
dges a separate graph ( Hallquist and Hillary, 2018 ). There are thresh-
lding methods resulting in a single graph and methods which involve
he analysis of a range of thresholds ( Fornito, Zalesky, and E. T. Bull-
ore, 2016 ). The former includes global weight-based or density-based

trategies and local strategies for network reduction, i.e., the minimum
panning-tree in which all nodes are connected with the minimal sum
f edge weights ( Alexander-Bloch et al., 2010 ). A fixed threshold to ne-
lect connections with minor strength, i.e., to set all correlations be-
ow 0.1 to 0 and everything else to 1, is the simplest method resulting
n a binarized matrix in which all connections are considered equally
mportant ( Figure 2A ). Whereas such an absolute threshold shows lit-
le variability across different parcellation schemes (i.e., the number
f brain regions), the resulting graphs differ in density, which can en-
orce/ignore nonsignificant/significant connections ( Wijk et al., 2010 ).
ore stable network measures can be obtained with a proportional

hreshold ( Garrison et al., 2015 ; van den Heuvel et al., 2017 ) by nor-
alizing all connections to the strongest connections in each network

o maintain equal network density across groups. Thus, differences in
raph metrics (e.g. clustering coefficient and characteristic path length)
re assumed to result from differences in the topological organization
f edges and not from differences in the number of edges. As there is
o lower cut-off, the inclusion of lower correlation potentially includes
ore random/noisy connections ( van den Heuvel et al., 2017 ). Notably,

here are opposing reports about using a fixed or proportional thresh-
ld and for many disease states no validation of an optimal threshold
xists ( Buchanan et al., 2020 ; Bachmann et al., 2018 ; Hallquist and
illary, 2018 ). The threshold strategy should be adjusted to the experi-
ental paradigm: if a change in density is expected to be a confounder,
 proportional threshold should be chosen but if it can be interpreted as
n effect of the intervention, a weight-based method might be the bet-
er solution ( Fornito et al., 2016 ). To overcome an arbitrary distinction
etween important and unimportant edges, common strategies involve
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Figure 3. Illustration of local measures. Circles and connecting lines represent edges and nodes, respectively. Important nodes highlighted in red, green or blue). 
The route of the shortest path is shown in a weighted graph. Considering a binary graph, the shortest path then changes to A-D-G. 
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) a sequence of increasing thresholds and to compare the network mea-
ures at each threshold ( Fallani et al., 2014 ), ii) a selection (a window)
f thresholds ( Lohse et al., 2014 ), and iii) the area under the curve, in
hich the network measures are integrated over the full range of thresh-
lds ( He et al., 2009 ; Bassett et al., 2012 ). 

ocal and global network measures 

This section briefly introduces the most frequently used network
easures to quantify local and global changes. Notably, for some mea-

ures, e.g. the clustering coefficient, the calculation depends on the type
f network (binary/weighted, directed/undirected). In our summary,
e have focused on binary/weighted, undirected networks as the most

ommon for rs-fMRI and DTI analysis. Illustrations of graphs represent-
ng local and global measures can be found in ( Figs. 3 and 4 ). 

egree d ( v ): [0 ,|V | ] 
he number of connections of a node v (neglects edge weights). 

ode strength s ( v ) ∈ R 

he sum of all edge weights connected to the node v in a weighted
irected or undirected graph. 

ocal clustering coefficient C ( v ): [0 , 1] 
he fraction of neighbors of a node that are neighbors of each other. 

articipation coefficient P ( v ): [0 , 1] 
etermines if the edges of a node v tend to be clustered into one module
f the network or link different specialized modules. 

etweenness centrality b ( v ): [0 , 1] 
he number of most efficient (shortest) paths in the graph that pass
hrough the node. 

igenvector centrality EC ( v ) ∈ R 

+ 

etermines if the node is connected to other nodes with high degrees. 
5 
ocal efficiency E loc ( v ): [0 , 1] 
escribes how well information can be transmitted in the immediate

urrounding of the node v and provides a basis for effective segregated
nformation processing in the network. 

hortest path l vu: [1 ,n V − 1] 
he shortest path is the path between two nodes that minimizes the
otal edge weight along the path (sum of all involved edge weights).
n a binary graph it is determined by the minimum number of edges
etween two nodes. 

etwork hubs and rich club 

etwork hubs are connected to a high number of nodes and/or link
ifferent subnetworks. The rich club is the tendency of connector hubs
o have connections outside of their modules merely among themselves,
efining a core network structure that allows efficient integration of
therwise segregated subnetworks. 

lobal clustering coefficient C ( G ): [0 , 1] 
he mean local clustering coefficient of all nodes in the network. 

ransitivity T (G): [0,1] 
 variant of the global clustering coefficient, reflecting the network’s

endency to be segregated into relatively independent, local neighbor-
oods. 

ensity Den ( G ): [0 , 1] 
he fraction of existing edges in the network relative to the maximal
umber of possible edges. 

haracteristic path length L ( G ) ∈ R 

+ 

 measure for global connectedness, calculated as the average shortest
ath length between all pairs of nodes in the graph. 

lobal efficiency E glob ( G ): [0 , 1] 
he inverse of the characteristic path length and a measure of global
onnectedness. 
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Figure 4. Illustration of global measures. Circles and connecting lines represent edges and nodes, respectively. 
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ssortativity r ( G ): [ − 1 , 1] 
etermines the tendency of networks to included nodes which connect
ith other similar nodes. 

odularity Q ( G ): [ − 1 , 1] 
etermines the degree to which the network tends to be segregated into

elatively independent, non-overlapping modules (subnetworks). 

mall-worldness S ( G ) = 𝜎( G ) ∈ R 

+ 

etworks that classify small-world properties are characterized by over-
ll short path lengths and a high degree of clustering. 

or a more detailed description about the measures, the mathematical
efinitions, and graphtheoretical equations, see the Supplementary Ma-
erial and the BCT documentation. 1 

rocessing tools 

Calculating graph theoretical measures on graphs with many regions
equires efficient and automated processing tools. For human brain MRI,
he Brain Connectivity Toolbox (BCT) set the standard in the field of
rain network analysis ( Rubinov and Sporns, 2010 ). As the BCT is a
ibrary of functions that work with adjacency matrices, it is also suit-
ble for mouse brain MRI and other species. However, for many func-
ions it is worth embedding them in larger, in-house developed scripts,
or example to compare multiple groups or to display the results in
 plot. Furthermore they can help to simplify the usage of the func-
ions. However, in order for results to remain comparable, it is ben-
ficial to establish common software pipelines. In addition to exist-
ng toolboxes, which include only a selection of network algorithms
nd/or an adaption to human MRI (e.g., MagnAn and CONN), we pro-
ide with AIDAconnect the first atlas-based toolkit dedicated to mouse
rain MRI and a comprehensive collection of BCT-based ready-touse
cripts ( https://github.com/aswendtlab/AIDAconnect ) . AIDAconnect is
 wrapper for the BCT functions, it covers scripts to calculate local and
lobal measures, e.g., the degree of a region at multiple time points
r the shortest path between two regions. AIDAconnect requires a ma-
rix containing the time series per brain region or the number of fiber
racts between brain regions as input. For convenience, AIDAconnect
s tailored to our preprocessing pipeline AIDAmri ( Pallast et al., 2019 ),
hich provides this input shape. To visualize network measures, auto-
ated plot functions are included, e.g. for local and global measures
1 https://sites.google.com/site/bctnet/list-of-measures 

e  

e  

r  

6 
ver time for multiple groups. We have also included additional scripts
hat go beyond the functionality of the BCT, for example to calculate
ew or lost connections between two time points, to calculate the n-
trongest connections of a region and scripts to display the degree or
trength distribution. Further scripts plot the alteration of certain edge
eights over time or display the connectivity of pre-selected subgraphs

n anatomically correct 2D grids. The combination of functions allows
ore advanced calculations, e.g. to classify certain regions as network

onnector hubs. As hub nodes usually are determined by a high degree
alue, the included degree distribution function lists all regions in a cer-
ain degree range, which is used to determine the ones with the highest
egree. Connector hubs are further characterized by having connections
o other nodes or modules ( van den Heuvel and Sporns, 2013 ). Thus, lo-
al measures that describe centrality are applied for these high-degree
egions in a next step, e.g. the participation coefficient, which tends to
e close to 1 if the node’s edges are uniformly distributed among all
xisting modules ( Guimerà and Amaral, 2005 ). This way, AIDAconnect
as already successfully applied to longitudinal DTI and rs-fMRI data in

xperimental stroke studies ( Pallast et al., 2020 ; Aswendt et al., 2020 ;
swendt et al., 2021 ). 

tatistical tests 

Statistical tests for networks between multiple groups require simi-
ar care as time series/fiber tracking data, which have been discussed
n detail elsewhere ( Kim et al., 2014 ). For both local and global mea-
ures, the typical statistical pitfalls apply: the statistical group compar-
sons based on individual connections require a correction for multiple
esting, e.g, based on the false discovery rate (FDR), which reduces sta-
istical power drastically when applied on large networks. Comparisons
n a network level is simpler, however, lacks specificity and power to
etermine changes in only a small subset of the whole neural network
 Fornito et al., 2016 ). The same hypotheses have to be tested many times
o localize effects to single nodes or even single edges. This leads to the
ultiple comparison problem and needs to be corrected. The widely
sed Bonferonni-, Š idák- and Holm-Bonferonni corrections are highly
onservative and may obscure true positives. These methods provide
trong control of familywise errors. The family consists of all nodes or
dges tested. The robust control ensures that a rejection of the null-
ypotheses is valid ( Fornito et al., 2016 ). Weak control of family-wise
rrors can increase the statistical power. An example is the false discov-
ry rate ( Benjamini and Hochberg, 1995 ), which ensures a maximum
ate of falsely rejected null hypotheses. For cases with no rejected null

https://github.com/aswendtlab/AIDAconnect
https://github.com/aswendtlab/AIDAconnect
https://sites.google.com/site/bctnet/list-of-measures
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Figure 5. Selection of MR neuroimaging studies using graph theory in mice. A) Selection diagram showing the number of studies from the database search. B) 
Quantitative comparison of mouse brain MRI studies using graph theory based on the field strength, scan, method for graph construction, and how often local 
and global measures were applied. Note: all measures that occurred only once were excluded and the measures ’Hubness’, ’Hub Scores’ and ’Hub Tendency’ were 
summarized as ’Hubness’. 

h  

n  

o  

l  

i  

c  

n  

c
 

s  

y  

t  

m  

t  

t  

b  

a  

c

M

 

t
a  

d  

(  

c  

g  

d  

a  

a  

a  

f  

a  

m  

b  

m  

w  

l  

c  

t  

t  

c  

c  

f  

t

I

 

d  

d  

f  

p  

g  

t  

m  

t  

i  

d  

a  

m

ypothesis, weak and strong control yield the same result. A rejected
ull hypothesis leads to an overall rejection because the weak control
f family-wise errors discriminates between individual hypotheses. The
isted corrections do not consider the spatial and topological features
nherent to brain networks. Methods considering these features can in-
rease the statistical power. These class methods are, for example, the
etwork-based statistic ( Zalesky et al., 2011 ), which provide a weak
ontrol of the familywise error. 

Most animal neuroimaging studies are underpowered with sample
izes below 10 per group ( Mandino et al., 2020 ). Small sample sizes
ield a poor fit of the parametric test distributions like the Student’s
-distribution. The construction of an empirical test distribution by per-
utation tests can be beneficial for the small group sizes. These tests use

he collected data set and permute the group assignments in each sample
o construct the test distribution. This class accounts for dependencies
etween tests inherently present in brain networks due to their spatial
nd topological structure but can also be introduced by the method to
onstruct the graph ( Fornito et al., 2016 ; Good, 1994 ). 

RI network studies in mice 

We searched PubMed for articles related to the keywords in the ti-
le/abstract: ”graph theory, network, connectivity ” + ”mice ” + ”MRI ”
nd collected 300 studies. From that initial list, unrelated studies and
uplicate findings were excluded. Finally, 18 studies were included
 Figure 5A ). The rat stroke study by van Meer et al. was also included be-
ause it was one of the first experimental studies of brain disease to use
raph theory and serves as a (historical) reference here. In Table 1 the
isease model, MRI protocol, image processing, graph-based measures,
vailability of code/data, the applied software tools for graph theory,
nd the statistics are summarized. Most studies were conducted at 7.0T
7 
nd 9.4T using high-resolution T2-weighted MRI as reference, and rs-
MRI and DTI protocols at similar frequency. More studies applied an
tlas-based analysis. The basic local measures degree and strength were
ost frequently used. Other local measures, e.g., local efficiency and

etweenness centrality were much less applied. The global measures
odularity, clustering coefficient, characteristic path length, and small-
orldness were applied most. In contrast, global efficiency was used

ess often. Other commonly used measures in graph theory that describe
entrality features of a node, e.g., closeness centrality, eigenvector cen-
rality, or participation coefficient, were not part of the discussion in
hese studies. The processing tools and mathematical definitions used to
onstruct the graphs and calculate the network measures could not be
ompared as most either the code and or the raw data were not available
or re-evaluation. In this line, there was no consensus on the statistical
ests. 

nterpretations 

The interpretation of graph theoretical measures is difficult to stan-
ardize and depends on how the MRI data were collected or which
isease model was studied. The animal models reviewed here, dif-
er substantially, and, therefore, we could not extract a general inter-
retation for network measures. While in human MRI, a decrease in
lobal efficiency is a validated biomarker for detecting dementia in pa-
ients with small vessel disease and age-related mild cognitive impair-
ent ( Lawrence et al., 2014 ; Berlot et al., 2016 ), biomarkers remain

o be established for pre-clinical studies. Based on the selected stud-
es, we provide an overview of previous attempts to describe the un-
erlying biological processes that contribute to graph network alter-
tions. The interpretation is structured in three categories of network
easures: 
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Table 1 

Overview of mouse brain studies (in alphabetical - first author - order) 

Study 
MRI Protocol 
Atlas- / voxel-based 

( Aswendt, Green, et al., 2021 ) 
9.4T: T2w: 0.068 × 0.068 × 0.3 mm, rs-fMRI (EPI): 0.182 × 0.182 × 0.4 mm 

Atlas-based (custom Allen Reference Atlas CCF v3 ( Lein et al., 2007 ), 49 regions per hemisphere) 
Graph-based 
measures 

Local: d,s 
Global: C,Den,L,Q 

Code / Data available Yes 1 / Yes 2 

Tools AIDAmri ( Pallast, Diedenhofen, et al., 2019 ) and AIDAconnect 
Statistics Two-way ANOVA with false discovery rate (FDR) correction for group comparisons 
Disease model Stroke (photothrombosis model) 

Study ( Barbeito-Andrés et al., 2018 ) 
MRI Protocol 9.4T: T2w: 0.117 × 0.117 x NA mm, DTI: NA 

Atlas- / voxel-based Atlas-based (Allen Reference Atlas ( Lein et al., 2007 ), 24 ROIs) 
Graph-based 
measures 

Local: b,C,d,E loc 
Global: C,L,S,median weight value,rich club coefficient 

Code / Data available No / No 
Tools Custom tools based on the Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ), igraph 3 in R 
Statistics Bartlett-Test to assess similarity of variances between groups 
Disease model Effect of maternal nutritional restriction during pregnancy on offspring brain development 

Study ( Blaschke et al., 2021 ) 
MRI Protocol 9.4T: T2w, rs-fMRI (EPI) 0.182 × 0.182 × 0.5 mm 

Atlas- / voxel-based Atlas-based (custom Allen Reference Atlas CCF v3, 49 regions per hemisphere) 
Graph-based 
measures 

Local: s 
Global: L,S,mean node strengh s 

Code / Data available No / No 
Tools AIDAmri ( Pallast, Diedenhofen, et al., 2019 ) and custom Matlab tools based on the Brain Connectivity Toolbox 

( Rubinov and Sporns, 2010 ) 
Statistics Group differences in global network parameters between stroke and individual controls tested by either 

independent t-Test or Mann-Whitney-U-Test with post-hoc FDR correction 
Disease model Stroke (photothrombosis and dMCAO model) 

Study ( Boehm-Sturm et al., 2017 ) 
MRI Protocol 7T: T2w: 0.1 × 0.1 × 0.45 mm, DTI: 0.225 × 0.225 × 0.225 mm 

Atlas- / voxel-based Atlas-based (atlas not specified, 7 ROIs) 
Graph-based 
measures 

Local: d,E loc 
Global: C,E glob ,Q,T 

Code / Data available No / No 
Tools Not specified 
Statistics Paired t-test (time comparison), Mann–Whitney-U-test (clustering coefficient) and unpaired t-test for group 

comparison 
Disease model Brain hypoperfusion 

Study 
MRI Protocol 
Atlas- / voxel-based 

( Cerina et al., 2020 ) 
9.4T: T2w: NA, DTI (EPI): 0.125 × 0.125 × 0.3 mm 

Atlas-based (Allen Reference Atlas CCF v3 ( Lein et al., 2007 ), 82 ROIs) 
Graph-based 
measures 

Local: None 
Global: C,Q 

Code / Data available No / Yes 4 

Tools Custom tools based on the Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ) 
Statistics One-way ANOVA for group and time point comparison incl. post-hoc Tukey’s or Bonferroni’s tests 
Disease model Demyelination (Cuprizone treatment) 

Study ( Colon-Perez et al., 2019 ) 
MRI Protocol 11.1T: T2w (RARE): 0.059 × 0.043 × 0.7 mm, rs-fMRI (EPI): 0.234 × 0.229 × 0.9 mm, DTI (EPI): 

0.117 × 0.117 × 0.7 mm 

Atlas- / voxel-based Atlas-based (Multi-Atlas Label Fusion ( Ma et al., 2014 ), 90 ROIs, 45 per hemisphere) with additional ICA (20 
predetermined components) and PCA (projection into 12, 20 and 30-dimensional subspace) 

Graph-based 
measures 

Local: C 
Global: L,Q,S,global node strength 

Code / Data available No / No 
Tools Custom tools based on the Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ) 
Statistics Two-factor ANOVA (Strain x Treatment) and Tukey’s post-hoc test 
Disease model Amyloidosis (Quantifying microstructural changes for potential biomarkers using neurite orientation dispersion and 

density imaging) 

Study ( Fernández-García et al., 2020 ) 
MRI Protocol 7.0T: T2w (RARE): 0.08 × 0.08 × 0.5 mm, rs-fMRI (EPI): 0.21 × 0.21 × 0.5 mm 

Atlas- / voxel-based Atlas-based using the Magnetic Resonance Microscopy Atlas (20 ROIs) ( Ma et al., 2008 ) 
Graph-based 
measures 

Local: E loc ,s 
Global: C,E glob 

Code / Data available No / No 
Tools Custom (not specified) based on the Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ) 
Statistics Two-tailed Student’s t-test or Two-way ANOVA incl. post-hoc Bonferroni’s tests 
Disease model Huntington mouse model 

Study ( Grandjean, Zerbi, et al., 2017 ) 
MRI Protocol 9.4T: rs-fMRI (ME-EPI): 0.3 × 0.3 × 0.3 mm 

Atlas- / voxel-based Voxel-based (group-ICA with 30 pre-determined components, 17 components with plausible anatomical locations) 
Graph-based 
measures 

Local: l 
Global: None 

Code / Data available No / Yes 5 

Tools igraph 3 in R 
Statistics Two-way t-test for correlation comparison 
Disease model No disease model (Comparison of functional connectivity with the underlying monosynaptic structural connectome 

as provided by the Allen Mouse Brain Connectivity Atlas) 

( continued on next page ) 

8 
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Table 1 ( continued ) 

Study 
MRI Protocol 
Atlas- / voxel-based 

( Hübner et al., 2017 ) 
7T: T2w: 0.051 × 0.051 × 0.3 mm, rs-fMRI (EPI): 0.15 × 0.15 × 0.7 mm, DTI (DT-EPI): 0.094 × 0.094 × 0.5 mm 

Voxel-based (group ICA tested with ICASSO (( Himberg et al., 2004 ), 90 components) with a following overlap 
identification using the Allen Reference Atlas ( Lein et al., 2007 ) resulting in 82 ROIs 

Graph-based 
measures 

Local: s 
Global: C,L,Q,S 

Code / Data available No / No 
Tools Not specified for the calculation of graph measures 
Statistics two-sample t-test for group comparison, heterogeneous variances and FDR corrected 
Disease model Demyelination (Comparative evaluation of structural vs. functional connectivity after Cuprizone treatment) 

Study ( Iturria-Medina et al., 2013 ) 
MRI Protocol 7T: DTI: 0.08 × 0.08 × 0.08 mm 

Atlas- / voxel-based Atlas-based (Waxholm Space mouse brain atlas ( Johnson et al., 2010 ), 26 gray matter regions parcellated into 75 
ROIs per hemisphere) 

Graph-based 
measures 

Local: E loc 
Global: C,E glob ,L,S 

Code / Data available No / Yes 6 

Tools Not specified 
Statistics Correlation coefficients for subject comparison 
Disease model No disease model (General estimation of graph measures) 

Study ( Karatas et al., 2021 ) 
MRI Protocol 7T: T2w: 0.051 × 0.051 × 0.3 mm, rs-fMRI (GE-EPI): 0.15 × 0.15 × 0.7 mm, DTI (DT-EPI): 0.094 × 0.094 × 0.5 mm 

Atlas- / voxel-based Atlas-based (Allen Reference Atlas ( Lein et al., 2007 ), 37 ROIs) 
Graph-based 
measures 

Local: Hubness,s,Stouffer coefficients ( Stouffer, 1936 ) 
Global: None 

Code / Data available No / No 
Tools In-house developed MATLAB Tools 
Statistics One-sample t-test to identify statistically significant edges, FDR corrected and two-sample t-test for group differences 
Disease model No disease model (Comparison of structural and functional connectivity between C57BL/6 and BALB/cJ mice) 

Study ( Komaki et al., 2016 ) 
MRI Protocol 7T: T2w (RARE): 0.051 × 0.051 × 0.3 mm, DTI (EPI): 0.094 × 0.094 × 0.5 mm 

Atlas- / voxel-based Voxel-based (576 subdivisions based on Allen Brain Reference atlas) 
Graph-based 
measures 

Local: b,C,d,E loc ,EC 
Global: None 

Code / Data available No / No 
Tools CONN ( Whitfield-Gabrieli and Nieto-Castanon, 2012 ), Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ) 
Statistics Paired t-test (graph measures) and FWE-corrected two-sample t-test (functional connectivity) for group comparison 
Disease model Peripheral nerve injury (neuropathic allodynia) 

Study ( Kreitz et al., 2020 ) 
MRI Protocol 9.4T: rs-fMRI (EPI): 0.117 × 0.117 × 0.5 mm 

Atlas- / voxel-based Both Atlas-based (in-house digital 3D brain atlas, 211 ROIs according to ( Franklin and Paxinos, 2008 )) and 
Voxel-based (ICA with Multi Seed Region Approach) 

Graph-based 
measures 

Local: C,d,local L,s,Hub Scores HITS ( Kleinberg, 1999 ) 
Global: C,L,S,customized Q ( Blondel et al., 2008 ) 

Code / Data available No / No 
Tools Custom, Network Workbench Tool 7 , Network based statistics (NBS, ( Zalesky et al., 2010 )) 
Statistics Two-factor ANOVA withinteraction for group comparison incl. post-hoc Tukey’s test, homoscedastic two sided t-test 

for significant differences per brain structure incl. FDR correction 
Disease model Impact of maternal immune activation (MIA, treatment of pregnant mice with Poly(I:C)) on the brain of the adult 

offspring 

Study ( Liu et al., 2016 ) 
MRI Protocol 16.4T: Diffusion-weighted (SE): 0.1 × 0.1 × 0.1 mm 

Atlas- / voxel-based Atlas-based: CAI (Centre for Advanced Imaging, University of Queensland) and JHU MRI atlas (Johns Hopkins 
University). 

Graph-based 
measures 

Local: b,d 
Global: S,Q 

Code / Data available No / No 
Tools GRETNA 

8 ( Wang et al., 2015 ) 
Statistics NBS ( Zalesky et al., 2010 ) 
Disease model Adolescent socially isolated mice 

Study ( Liska et al., 2015 ) 
MRI Protocol 7T: T2w (RARE): 0.1 × 0.1 × 0.5 mm, rs-fMRI (EPI): 0.2 × 0.2 × 0.5 mm 

Atlas- / voxel-based Voxel-based: 16,135 × 16,135 connectivity matrix was calculated for each subject using Pearson product–moment 
correlation coefficient. 

Graph-based 
measures 

Local: s, within module s,Diversity 
Global: customized Q ( Blondel et al., 2008 ) 

Code / Data available No / No 
Tools NA 

Statistics subject-wise connectivity matrices were partitioned and the similarity of each pair of individual partitions was 
quantified with the variation of information (VI) metric ( Rubinov and Sporns, 2010 ) 

Disease model No disease model (Mapping of functional connectivity hubs at voxelscale) 

Study ( Mechling, Hübner, et al., 2014 ) 
MRI Protocol 7T: rs-fMRI (EPI): 0.15 × 0.15 × 0.7 mm 

Atlas- / voxel-based Voxel-based (Group ICA to form averaged functional clusters using ICASSO ( Himberg et al., 2004 ), 92 components) 
Graph-based 
measures 

Local: d,Diversity,Hub Tendency,s 
Global: C,L,Q,S 

Code / Data available No / No 
Tools Graph theory methods as described by ( Newman, 2006 ) 
Statistics Not specified for graph measures, one-sample t-test for statistical relevance of direct connectivity 
Disease model No disease model (Large-scale mouse brain functional connectivity (MBFC)) 

( continued on next page ) 

9 
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Table 1 ( continued ) 

Study 
MRI Protocol 
Atlas- / voxel-based 

( Mechling, Arefin, et al., 2016 ) 
7T: T2 (RARE): 0.051 × 0.051 × 0.3 mm, rs-fMRI (EPI): 0.15 × 0.15 × 0.75 mm, DTI (EPI): 0.094 × 0.094 × 0.5 mm 

Voxel-based: Identification of clusters as nodes via ICA (100 components), followed by registration with the Allen 
Reference Atlas to select 87 functional clusters 

Graph-based 
measures 

Local: C,Diversity,s 
Global: L,Q,S 

Code / Data available Yes 9 / No 
Tools Graph theory methods as described by ( Newman, 2006 ) 
Statistics ICASSO to assess pattern stability, no statistical group comparison 
Disease model Mu opioide rececptor knockout mice (Oprm1-/-) vs control mice 

Study ( Meningher et al., 2020 ) 
MRI Protocol 7T: DTI (EPI): 0.21 × 0.21 × 0.21 mm 

Atlas- / voxel-based Atlas-based (DSURQE atlas 10 , 68 ROIs) Voxel-based analysis for structural alteration analysis in gray matter brain 
regions 

Graph-based 
measures 

Local: b,Cl,d,E loc ,s 
Global: E glob 

Code / Data available No / No 
Tools Network Analysis Tool embedded in ExploreDTI 11 , Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ) in 

combination with custom MATLAB scripts 
Statistics Mixed design ANOVA with group and time point effect, FDR corrected 
Disease model Mild traumatic brain injury (mTBI) 

Study ( Pallast, Wieters, et al., 2020 ) 
MRI Protocol 9.4T: T2w: 0.068 × 0.068 × 0.4 mm, DTI (EPI): 0.14 × 0.14 × 0.5 mm 

Atlas- / voxel-based Atlas-based (custom Allen Reference Atlas CCF v3 ( Lein et al., 2007 ), 49 regions per hemisphere, 13 per hemisphere 
selected for graph analysis) 

Graph-based 
measures 

Local: d,l,s 
Global: None 

Code / Data available Yes 12 / Yes 13 

Tools Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ) 
Statistics Mixed-effects analysis (Greenhouse-Geisser correction) for time point and group comparison, post-hoc multiple 

comparisons FDR corrected 
Disease model Stroke (photothrombosis model) 

Study 
MRI Protocol 
Atlas- / voxel-based 

( Pradier et al., 2021 ) 
9.4 T: rs-fMRI (EPI): 0.35 × 0.325 × 0.5 mm 

Atlas-based (custom mouse brain atlas with 188 ROIs derived from the Franklin and Paxinos mouse brain atlas 
( Franklin and Paxinos, 2008 )) 

Graph-based 
measures 

Local: authority,b,C,d,hubscore,average l,s 
Global: C,L,S,customized Q ( Blondel et al., 2008 ) 

Code / Data available No / No 
Tools MagnAn 14 

Statistics Network based statistics NBS ( Zalesky et al., 2010 ) as implemented in MagnAn 
Disease model No disease model (Influence of medetomidine/isoflurane anaesthesia) 

Study ( van Meer et al., 2012 ) 
MRI Protocol 4.7T: T2w, DTI (EPI), rs-fMRI (EPI): 0.5 × 0.5 × 1.5 mm 

Atlas- / voxel-based Voxel-based (Probabilistic ICA to extract a group-averaged functional network, 7 components) 
Graph-based 
measures 

Local: C,l 
Global: S 

Code / Data available No / No 
Tools Custom (not specified), C ++ Boost Graph Library 15 

Statistics Two-sample paired t-tests (time point comparison), Mann–Whitney-U-test (sensorimotor performance scores), 
Repeated-measures linear mixed model (network parameters over time and between groups) with post-hoc Tukey’s 
test 

Disease model Rat : Stroke (MCAO model) 

1 https://edmond.mpdl.mpg.de/imeji/collection/Ce5QnWU4SktzEPN 

2 https://github.com/aswendtlab/Project _ Microbiome 
3 https://igraph.org/r/ 
4 https://www.dropbox.com/sh/xmxmzosxrudpx1l/AABM7L_jtkd2z6oi3pnqVNZoa?dl = 0 
5 http://doi.org/10.5905/ethz-1007-59 
6 https://www.nitrc.org/projects/birn/ 
7 http://nwb.slis.indiana.edu 
8 https://www.nitrc.org/projects/gretna/ 
9 https://www.uniklinik-freiburg.de/mr-en/research-groups/diffperf/fibertools.html 
10 https://github.com/CoBrALab/documentation/wiki/DSURQE- atlas- hierarchical- downsample 
11 https://www.exploredti.com 

12 https://github.com/aswendtlab/AIDAconnect 
13 https://doi.gin.g-node.org/10.12751/g-node.okz5nn 
14 http://www.biocom-online.de/products_ip.html 
15 https://www.boost.org/doc/libs/1_66_0/libs/graph/doc/index.html 
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1 connectivity strength: relates to the edge weights, which are either
based on the correlations (rs-fMRI) or fiber counts (DTI) 

2 network segregation: describes the tendency of the brain to divide
itself into relatively independent, specialized subunits 

3 network efficiency: describes how well the subunits are intercon-
nected (integrated) to allow effective segregated information pro-
cessing ( Rubinov and Sporns, 2010 ; Farahani et al., 2019 ). 

onnectivity strength 

Connectivity strength is the most fundamental parameter calculated
s edge weight, influencing node strength and various other network
easures. In a longitudinal structural connectivity study of experimen-

al stroke, we previously described specific de- and increased connec-
ivity strength, e.g., in ipsilesional cortico-cortical and interhemispheric
halamo-cortical fiber tracts, respectively, which correlated with senso-
imotor behavior ( Pallast et al., 2020 ). Kreitz et al. observed alterations
n functional connectivity and anatomical size of different brain regions
n a model of maternal immune activation on the brain of adult off-
pring by the treatment of pregnant mice. A significantly smaller size
f the corpus callosum and a reduced connectivity strength were sug-
ested to be related to impaired functional connectivity between both
emispheres. However, no changes in global graph measures and hub
unctionality were observed, indicating that the overall efficiency of in-
ormation integration remained the same ( Kreitz et al., 2020 ). In the
uprizone model, inducing oligodendrocyte death and demyelination,
übner et al. observed decreased strength values in default mode net-
ork (DMN) nodes ( Hübner et al., 2017 ). These studies are in line with

he common interpretation of structural and functional connectivity to
e directly related to axonal connectivity and functional communica-
ion. 

etwork segregation 

lustering coefficient 
Several acute injury studies reported an increased clustering coeffi-

ient as part of a compensatory effect inside and around the affected
rea, i.e., neuronal loss or disturbed signal synchronization followed by
educed signal correlations and functional connectivity ( van Meer et al.,
012 ; Cerina et al., 2020 ; Boehm-Sturm et al., 2017 ; Komaki et al., 2016 ;
eningher et al., 2020 ; Blaschke et al., 2021 ). Further, an increased

lustering coefficient was linked to demyelination in a multiple sclero-
is mouse model and interpreted as a cost-efficient cerebral reorganiza-
ion with strengthened local information flow ( Cerina et al., 2020 ). In-
reased local connectivity of neighbors could be related to mechanisms
f neural plasticity, initial recruitment, and unmasking of diffuse redun-
ant neuronal pathways, and a reset of synaptic activity. Consequently,
here could be an increase in random integration between neurons re-
ulting in overconnectivity ( van Meer et al., 2012 ). In an experimental
troke study, van Meer et al. reported that the clustering coefficient un-
ergoes a dynamic change: the initial increase is followed by a decrease,
hich has been interpreted as part of the normalization process during
ost-stroke recovery, which involves the decline of redundant neuronal
onnections ( van Meer et al., 2012 ). Notably, the dynamic change de-
ended on the stroke lesion size, i.e., the clustering coefficient in large
trokes did not reach the baseline level, which likely reflects a more ex-
ensive and widespread recruitment during the recovery process, e.g.,
f contralesional homologous cortical tissue, and significant rewiring of
orticospinal tracts ( Jones and Adkins, 2015 ). In contrast, Mengingher
t al. reported a different clustering coefficient dynamic for mild trau-
atic brain injury in a subset of analyzed regions. Here, the local clus-

ering coefficient decreased until 7 days with a subsequent increase at
0 days post injury ( Meningher et al., 2020 ). The authors suggested
hat the initial decrease is related to diffuse axonal injury, followed by
etwork reorganization, including axonal sprouting, to create new local
onnections and overcome the structural loss. 
11 
ocal efficiency 
Local efficiency is based on the connectivity of the local neighbor-

ood. Thus, the interpretation is also related to similar neural plas-
icity mechanisms. An increase in local efficiency in mouse models of
mall vessel disease and neuropathic pain ( Boehm-Sturm et al., 2017 ;
omaki et al., 2016 ), was suggested a compensatory effect, in which lo-
al areas increase their connections due to a decline in the connectivity
etween larger functional subnetworks. 

ransitivity and modularity 
In addition to an increase in the clustering coefficient and local ef-

ciency, an increased transitivity and a decreased modularity were re-
orted only by two studies. In the small vessel disease model, Boehm-
turm et al. base their interpretation on changes in tissue microstructure
ithin particular network hubs and a reduced number of heavily inter-

onnected subgroups leading to less distinct subnetworks in response
o hypoperfusion. They further proposed that a compensatory effect oc-
urs due to an overall decline in the connectivity between more ex-
ended functional subnetworks. Consequently, closely connected struc-
ures might increase their connections. In another study Modularity de-
ived from DTI connectome negatively correlated with locomotor ac-
ivities and positively correlated with contextual fear conditioning and
one fear conditioning ( Blaschke et al., 2021 ). The authors report a de-
reased Modularity of social isolated mice and suggest not fully matured
rain circuits as explanation. The absence of social experience may dis-
upt axonal pruning of neuronal pathways including the orbitofrontal
ortex. A decreased Modularity was also found in germ-free mice com-
ared to control mice with healthy gut microbiom. Interestingly, in
erm-free mice the pyramidal spine density was positively correlated
ith the global network density suggesting that the global network is
enser but less structural organized ( Aswendt et al., 2021 ). In contrast,
n increase of modularity over 5 weeks was reported for the cuprizone
odel of widespread demyelination in mice. Cerina et al. suggested that

rain network modifications during the remyelination phase occurred
oncerning long-range structural similarity and led to more local homo-
eneity ( Cerina et al., 2020 ). 

etwork efficiency 

hortest path 
In a previous experimental stroke study, we observed improved

hortest paths between ipsilesional striatum and contralesional motor
ortex, which we suggest relates to compensatory relearning of motor
asks after stroke and thus a change in network efficiency ( Pallast et al.,
020 ). Van Meer et al. observed a deteriorated shortest path after stroke
n the bilateral sensorimotor cortices, expressed by an increased shortest
ath length ( van Meer et al., 2012 ). The authors suggested an increasing
andom integration between neurons due to the stroke lesion, following
 state of overconnectivity and hyperexcitability. A subsequent decline
f the shortest path length back to baseline level during post-stroke re-
overy was linked to dendritic pruning and synaptogenesis, leading to
he abolishment of nonessential connections ( van Meer et al., 2012 ).
owever, different from our cortical stroke study ( Pallast et al., 2020 ),
an Meer et al. observed a persistently increased shortest path length
n large cortico-striatal strokes potentially related to the recruitment of
ontralesional homologous cortical tissue and significant rewiring of the
orticospinal tracts ( Jones and Adkins, 2015 ). 

mall-worldness 
Small-worldness was proposed as a crucial aspect of efficient brain

rganization as changes correlate with brain disease states. It should be
oted that analysis steps, e.g., the parcellation detail and graph den-
ity, strongly interfere with the calculation and complicate the inter-
retation between studies ( Hilgetag and Goulas, 2015 ). Huebner et al.
ound preserved small-worldness values after demyelination processes,
uggesting a compensatory mechanism to maintain network efficiency



L. Scharwächter, F.J. Schmitt, N. Pallast et al. NeuroImage 253 (2022) 119110 

(  

d  

s  

a  

a  

3  

t  

b  

c  

i  

l  

f

M

c

 

c  

n  

i  

u  

2  

o  

t  

i
 

w  

b  

v  

r  

d  

b  

w  

o  

A  

p  

d  

f  

n  

c  

f  

l  

a  

e  

t  

s  

A  

f  

t  

b  

i  

n  

t  

n  

e  

b  

t  

I  

s  

w  

2  

i  

n  

i  

o  

t  

s  

s  

a  

h  

c  

s  

g  

i
 

e  

a  

w  

d  

b  

l  

r  

e  

t  

2

P

n

 

r  

o  

t  

u  

d  

p  

o  

2  

M  

T  

o  

b  

t  

c
 

s  

o  

w  

s  

c  

t  

t  

s  

l  

g  

C  

g  

i  

t  

a  

I  

t  

n  

m  

a  

i  

s  

G
 

i  

e  

a  
 Hübner et al., 2017 ). Likewise, Kreitz et al., who also hypothesized
emyelination, could not observe any changes in global measures like
mall-worldness, indicating that the overall network efficiency was un-
ffected ( Kreitz et al., 2020 ). In the small cortical stroke models (PT
nd dMCAO) in mice small-worldness was found to be increased at day
 and to negatively correlate with recovery ( Blaschke et al., 2021 ). In
he large stroke model (MCAO) in rats, small-worldness was found to
e increased subacutely (until 2 weeks post stroke), followed by a de-
rease towards baseline levels. The dynamic change might reflect the
nitial overshoot in neuronal clustering and wiring in response to the
ocalized network disturbance induced by the stroke, which stabilized
or efficient processing in a later phase ( van Meer et al., 2012 ). 

ouse-specific studies combining structural and functional 

onnectome data 

Graph theory applied to the structural and functional mouse brain
onnectome provides the unique opportunity to uncover common orga-
izational principles underlying neural processing. Experimental studies
n mice benefit from tools to specifically manipulate brain activity, e.g.
sing opto- and chemogenetics, in combination with MRI ( Desai et al.,
011 ; Ryali et al., 2016 ; Peeters et al., 2020 ), and a rich portfolio of
pen access databases, which in contrast to humanspecific databases, ex-
end to gene expression, electrophysiological properties, and viral trac-
ng ( Lein et al., 2007 ; Oh et al., 2014 ; Wang et al., 2020 .). 

The viral tracing data defines the current gold standard to generate
eighted graphs with known start and endpoints, which are defined
y the tracer injection site and the loss of fluorescence signal. Con-
ersely, it is possible to validate whole-brain in vivo and ex vivo tractog-
aphy. While the 3D colocalization of reconstructed fiber tracts might
iffer between both data sets, the overall correlation between larger
rain structures is high ( Calabrese et al., 2015 ; Goubran et al., 2019 ),
hich makes DTI the method of choice for studies of white matter re-
rganization ( Pallast et al., 2020 ). In our studies ( Pallast et al., 2020 ;
swendt et al., 2020 ), we found strong positive correlations when com-
aring in vivo DTI fiber tracts with the fluorescence projection volume
erived from the Allen Mouse Brain Connectivity Atlas ( Oh et al., 2014 )
or pre-selected regions. In comparing of in vivo rs-fMRI functional con-
ectivity with post mortem DTI and viral tracing of the rat brain, positive
orrelations were found between rs-fMRI and DTI connectomes but not
or rs-fMRI and viral tracing ( Straathof et al., 2020 ). This study high-
ights that a robust functional connection between homotopic cortical
reas does not implicate a solid structural connection, despite the pres-
nce of the corpus callosum. The correlation between rs-fMRI and viral
racing mouse data is different when BOLD signal dynamics are con-
idered ( Oh et al., 2014 ). When comparing 184 atlas regions from the
llen Mouse Brain Connectivity Atlas, strong correlations were found

or the degree and clustering coefficient, among other network proper-
ies derived from weighted connectomes ( Sethi et al., 2016 ). The com-
ination of in vivo and ex vivo connectomes is particularly helpful for
dentifying structural-functional relations. Using individual DTI-based
etwork models for simulations of functional connectivity with The Vir-
ual Brain (TVB), it was possible to show that individual structural con-
ectivity predicts individual functional connectivity better than an av-
raged structural connectivity brain, and predictions can be improved
y considering fiber directionality, coupling weights and specific fiber
racts derived from the Allen connectivity atlas ( Melozzi et al., 2019 ).
n addition to individual variability, the genetic background of mouse
trains imposes inter-strain differences in functional and structural net-
orks as shown, e.g., for C57BL/6 and BALB/c mice ( Karatas et al.,
021 ). In a voxel-based approach not pre-restricting the analysis us-
ng a parcellated connectome, a directed graph was calculated from a
ovel voxellevel data-driven model of the Allen Mouse Brain Connectiv-
ty Atlas ( Knox et al., 2019 ). The analysis adds to the previous finding
f evolutionarily-conserved, mutually-interconnected functional hubs in
he mouse brain ( Liska et al., 2015 ) and revealed segregated source and
12 
ink hubs embedded in a global hierarchy. Higher-order cortical areas
erve as primary sources of neural input, and subcortical relay stations
ct as important intermodular connector hubs. The removal of global
ubs was not related to a breakdown of network integrity and efficiency
ompared to a random node deletion ( Coletta et al., 2020 ). These results
uggest that the voxel-level mouse connectome is highly resilient to tar-
eted removal of hub regions, initially defined as critical for network
ntegrity and stability. 

Despite the similarities in global network organization, the differ-
ntial vulnerability of the human vs. mouse networks against targeted
ttacks warrants further studies comparing functional vs. structural net-
orks at different levels of resolution. A better understanding of such
ifferences will be essential for future translational studies using voxel-
ased vs. atlas-based parcellation of connectome data. In a recent trans-
ational atlas-based comparison, Blaschke et al. found the network pa-
ameters small worldness, characteristic path length and clustering co-
fficient to follow a similar pattern in the postacute stroke phase in pa-
ients compared to two cortical stroke models in mice ( Blaschke et al.,
021 ). 

ractical steps for greater use of graph theory in mouse 

euroimaging 

Translational studies in mouse models of neurological disorders cur-
ently lack behind the use of graph theory in human studies. As shown,
nly a few mouse brain MRI studies exist focusing on network measures
o explain brain pathologies. The main limitation for a more extensive
se of graph theory is related to non-standardized workflows, e.g., with
ifferent graph constructions, thresholds, and, most notably, the lack of
ractical guidelines on how to interpret the biology behind graph the-
retical measures ( Onias et al., 2014 ; Bertolero and Danielle S. Bassett,
020 ). The interpretation of certain values is challenging because the
RI processing and the examined disease model must be considered.
his makes the establishment of fixed values as generalized indicators
r thresholds for determining an unhealthy state difficult. Values cannot
e assigned good or bad without any reference. Likewise, the abstrac-
ion level of graph theory restricts the judgement whether values at a
ertain point indicate errors in the analysis. 

Currently, there is no generally valid quality control for the analy-
is with graph theory. In case of bad raw data quality, the high level
f abstraction of the underlying data using graph theory will lead to
rong results and misinterpretation - both difficult to detect retro-

pectively. Like any other advanced analysis technique the abstraction
an only be helpful if the raw data is reliable. Research is needed
o establish methods to assure the quality of the data. This involves
he quality of the recorded raw images to the plausibility of the con-
tructed graphs. Furthermore, research at the cellular or molecular
evel is needed to establish connections between observed changes in
raph theoretical measures and the underlying biological processes.
ausal interactions could be investigated by the combination of opto-
enetic or chemogenetic stimulation and electrophysiological record-
ngs ( Desai et al., 2011 ; Snyder and Bauer, 2019 ). Functional connec-
ivity measures of cooperation and segregation between brain regions
re heavily dependent on the overall network and behavioural state.
n addition, altered network states of microcircuits, e.g. the excitatory-
o-inhibitory ratio, are causally linked to modulation of functional con-
ectivity ( Markicevic et al., 2020 ). Thus, cross-modality and multipara-
etric data analysis extending network theory to other in vivo imaging

nd microscopy techniques with complementary spatiotemporal profile,
.e., optical intrinsic signal imaging, functional ultrasound, and light
heet microscopy is required ( White et al., 2011 ; Tiran et al., 2017 ;
oubran et al., 2019 ). 

Our summary of current mouse brain MRI studies revealed that the
nterpretation becomes even more complex when different disease mod-
ls with different underlying pathologies and time points are studied. In
 rapidly developing field, our summary of past studies does not claim to
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e complete but provides insight into the large variety of approaches,
ethods, and interpretations in this field. To stimulate the transition

o implement, apply, and interpret network measures, we propose in
ccordance with recent recommendations for clinical network studies
 Hallquist and Hillary, 2018 ): 

1 a harmonized brain parcellation using the Allen Mouse Brain Atlas
(CCF v3) with approximately 100 nodes to reduce the variability
in topological properties ( Zalesky et al., 2010 ; Pallast, Diedenhofen,
et al., 2019 ; Takata et al., 2021 ), 

2 the documentation and application of standardized pipelines, which
have been successfully used for mouse data (e.g. AIDAconnect,
CONN, GRETNA or MagnAn), 

3 the calculation of a set of network measures, which are com-
bined into more general terms for interpretation ( Rubinov and
Sporns, 2010 ), e.g., 
(a) network segregation (clustering coefficient, modularity, and lo-

cal efficiency) 
(b) functional integration (characteristic path length and global ef-

ficiency) 
(c) network efficiency (small-worldness, shortest path, and global

efficiency) 
(d) centrality/hubs (degree/strength, participation coefficient and

betweenness centrality) 
4 the integration of open science and FAIR data science approaches

( Nichols et al., 2017 ; Borghi and Gulick, 2018 ) to foster standardized
data acquisition, processing, and distribution, as critical elements to
develop and advance novel ways to use complex network measures
to explain brain function in health and disease in translation mouse
brain studies aligned with approaches in human neuroimaging. 
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